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Martingale integrals over Poissonian processes and the Ito-type equations with white shot noise
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The construction of the Ito-type stochastic integrals and differential equations for compound Poisson pro-
cesses is provided. The general martingale and nonanticipating properties of the ordinary~Gaussian! Ito theory
are conserved. These properties appear particularly important if the stochastic description has to be proposed
according to game theory or the linear relaxation~or the exponential growth! requirements. In contrast to the
ordinary Ito theory the~uncorrelated! parametric fluctuation of a definite sign can be still modeled by asym-
metric white shot noise, so the general scope of applications is not restricted by the positivity requirements.
The possible use of the developed formalism in econophysics is addressed.
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I. INTRODUCTION

The Ito theory of stochastic integrals~SI! and stochastic
differential equations~SDE! @1,2# results with martingale
properties of the integrals over the Wiener process and
lated nonanticipating properties of stochastic~Langevin!
equations with ~multiplicative! Gaussian white noise
~GWN!, which appear useful in a number of applications a
model studies. In Ref.@3# the importance of simultaneou
regarding of single-event properties@determined by a given
~required! probability distribution# together with certain cor-
relation behavior in stochastic modeling of various dynam
cal systems has been pointed out. The main idea of the
struction proposed in Ref.@3# is to choose the drift and
diffusion term in the Ito SDE in a way to fit both the targ
stationary probability density and the required autocorre
tion function ~or, equivalently, the spectral density! form.
The method has then been used to generate stationary
Gaussian~Markov! processes with exponentially decayin
correlation~or low-pass spectral density! @4,5#, considered as
particularly important in the Monte Carlo studies. Such b
havior of correlation appears fixed by the linear drift term
the Ito SDE, irrespectively on the form of the~state-
dependent! diffusion term. The last actually follows from th
general~nonanticipating! property of the Ito SDE:

dxt5 f ~x!dt1g~x!d+Wt , ~1!

the + sign is to indicate that the equation is understood~in-
terpreted! according to the Ito definition that̂g(x)d+Wt&
50, so that the regression equation for average

d^xt&5^ f ~x!&dt

looks similar to the ‘‘deterministic’’ onedx5 f (x)dt, and
becomes the same for an affinicf, i.e., when ^ f (x)&
5 f (^x&).

Ito equation~1! of a latter type, withf (x)5rx andg(x)
5sx, appears as a basic equation of~Bachelier-! Black-
Scholes theory of financial markets@6,7#, and it is obtained
under the assumptions that the average return is determ
by the interest rate rand that the relative changes of pric
are independent and Gaussian~the parameters is called
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volatility!. The Ito interpretation warrants that the determ
istic trend is not affected by the presence of fluctuatio
~risk!. The discountedprice S̃t , xt[St5ert S̃t , satisfies the
~particular! driftless Ito equationdS̃t5sS̃d+Wt . Such pro-
cesses have the property that the~future! conditional mean
value,^xtuxtn

, . . . ,xt1
&5xtn

, t>tn>•••>t1, is equal to the
last value specified by the condition. Such processes are
erally calledmartingalesand they are used for game theo
to define thefairnessof the game. The Ito theory provides a
effective method of construction of a certain class of mart
gales.

The use of the Ito theory is limited to Gaussian fluctu
tion. In some cases of~especially nonlinear! kinetic equa-
tions, such unboundedparametricfluctuations are excluded
by the stability conditions or by the positivity requiremen
@8# and then the other noise~not the GWN! is needed to
describe the fluctuation. On the other hand, the well-kno
property of the Ito theory is that the ordinary rules of diffe
entiation and integration are no longer valid@1,2#, being re-
placed by the specific Ito calculus. The mentioned gene
properties of the Ito theory appear precisely related to
specific calculus and thus cannot be immediately imp
mented to the non-Gaussian theory. The proper construc
of the Ito-type theory based on Poissonian processes is
main aim of the paper.

Let us remind that the integral over the Wiener proces

Jt5E
0

t

H~Ws!dWs

is not precisely determined in a conventional~Stieltjes-type!
sense, unless the additional rule of choosing the intermed
points during construction of approximate sums is specifi
@2#. The Ito choice

Jt5 lim( H~Wsi
!@Wsi 11

2Wsi
#

results, due to the statistical independence of increment
the Wiener process, in martingale property of the integ
^Jt&50. As a consequence, the ordinary rules do not ap
for the Ito integrals. In fact, havinĝI t&50, where
©2003 The American Physical Society17-1
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I t5E
0

t

G8~Ws!d+Ws

we cannot still identify I t with DG5G(Wt)2G(0), I t
ÞDG, because in general^DG&Þ0. Similarly, it turns out
that xt[x(t,Wt), considered as a function of two variable
represents the solution of Ito equation~1! only if the usual
]x/]W5g(x) and theunusual ]x/]t5 f (x)2Dg(x)g8(x)
condition is satisfied.@The noise strengthD is normalized by
Eq. ~3! or ~5!.#

There exists a Stratonovich definition of SI@9,2#, which is
free of this inconvenience, i.e., which is consistent with
ordinary ruledG(Ws)5G8(Ws)dWs ~in our notation with-
out + sign!,

Jt5 lim( H~W(si 111si )/2
!@Wsi 11

2Wsi
#.

This formal definition of SI corresponds to the choice
values of the integrand from the middle of the success
time intervals. Its practical importance lies in that the us
methods of computing the integrals and especially solv
the differential equations remain unchanged. For instan
the ordinary calculus applies also to the SDE written in S
tonovich interpretation. It means that Ito equation~1! and the
Stratonovich equation

dxt5@ f ~x!2Dg~x!g8~x!#dt1g~x!dWt

have the same solutionsx(t,Wt) and in such sense bot
forms are equivalent. The termDgg8 is called the ‘‘spurious
drift.’’ The Stratonovich definition is more popular in
physical literature because it may be easily extended for
tegrals over some other ‘‘singular’’ processes. The advant
of the Ito approach is that it usually better includes cert
general probabilistic properties required from the particu
stochastic description~modeling!. The advantage of the Stra
tonovich approach is that the well recognized~ordinary!
methods of transforming the variables and solving the diff
ential equations can be used. The two approaches ma
thus considered complementary.

The paper is organized as follows. In Sec. II the Ito-ty
integrals over compound Poisson processes are define
Sec. III the relation transforming between Ito-type a
Stratonovich-type of differential equations is obtained. T
examples are presented. The last section is for remarks.

II. STOCHASTIC INTEGRALS
OVER POISSON PROCESSES

There are two fundamental stochastic processes, Wi
processWt and Poisson processNt . The first is Gaussian an
continuous, the second is a point process and its trajecto
are piecewise constant functions, having some steps in
dom pointst i , which are distributed on positive semiax
with average frequencyl

Nt5(
i

ziQ~ t2t i !. ~2!
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zi are independent random numbers with common proba
ity distributionp(z). Both processes have stationary and
dependent increments. Using standard normalization~par-
ticularly ^Wt

2&52Dt, in the case of the Wiener process! we
have

^exp~yWt!&5exp~Dty2!, ~3!

^exp~yNt!&5exp@lt~211Eeyz!#, ~4!

whereEa(z)5*dzp(z)a(z) means averaging over rando
weightsz. Thus, for the infinitesimal increments~due to the
stationarity! dW5Wdt , dN5Ndt , k51,2, . . . , and

^~dW!k&5d2,k2Ddt1o@~dt!2#, ~5!

^~dN!k&5ldtEzk1o@~dt!2#. ~6!

Note that^Nt&5ltEz, so it is often convenient to subtrac
the deterministic compensator and consider the new pro
Ñt5Nt2ltEz ~of a zero mean!.

Consider the Stratonovich integral

E
0

t

dG~Ns!5G~Nt!2G~0!

and calculate its mean value. Because

^dG~N!&5^G~N1dN!2G~N!&

5 (
k51

` K dkG

dNkL ^~dN!k&
k!

5 (
k51

` K dkG

dNkL ldsEzk

k!

5ldsÊ G~N1z!2G~N!&, ~7!

thus

^G~Nt!2G~0!&5E
0

t

dslE^G~Ns1z!2G~Ns!&. ~8!

Computing Eq.~7! we have used stationarity and indepe
dence of increments ofNt and Eq.~6!.

According to the Stratonovich idea

dG~Ns!5G8~Ns!dNs , ~9!

and consequently for the Ito interpretation

dG~Ns!5G8~Ns!d+Ns1l@EG~Ns1z!2G~Ns!#ds.
~10!

In conclusion, we have following integration formulas:

E
0

t

G8~Ns!dNs5G~Nt!2G~0!, ~11!

for the Stratonovich-type integral and
7-2
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E
0

t

G8~Ns!d+Ns5G~Nt!2G~0!

2lE
0

t

ds@EG~Ns1z!2G~Ns!#

~12!

for Ito-type integral.
The limiting procedure@10#

Ez50, z→0, l→`, lEz252D, ~13!

in which a compound Poisson process approaches the W
process applied to Eq.~12! recovers the Ito rule of integra
tion

E
0

t

G8~Ws!d+Ws5G~Wt!2G~0!2DE
0

t

dsG9~Ws!.

Also note the expression

H~Ns!dNs5H~Ns!d+Ns1ldsEE
Ns

Ns1z

duH~u!, ~14!

which results from Eqs.~9! and ~10!.
Examples.Let us give few examples of the Ito-type inte

grals over standard Poisson process withz[1. Let G(u)
5u. Then, from Eq.~12!

E
0

t

d+Ns5Nt2lt. ~15!

Similarly, for G(u)5u2

E
0

t

2Nsd+Ns5Nt
22lE

0

t

ds@~Ns11!22Ns
2#

5Nt
22lt22lE

0

t

dsNs . ~16!

Using ^Nt
2&5l2t21lt and ^Ns&5ls we verify that the

mean value of Eq.~16! indeed vanishes. Consider final
G(u)5exp(yu). One obtains

E
0

t

yeyNsd+Ns5eyNt212l~ey21!E
0

t

dseyNs. ~17!

Using explicit expressions for averages, see Eq.~4!, we find
again that the mean value of the right-hand side of Eq.~17! is
zero.

III. STOCHASTIC DIFFERENTIAL EQUATIONS

Consider a~Stratonovich-type! equation

dxt5 f ~x!dt1g~x!dNt , ~18!

where xt[x(t,Nt) satisfying ]x/]t5 f „x(t,N)… and ]x/]N
5g„x(t,N)… is, by the definition, the stochastic solutio
of Eq. ~18!. Our aim is to find a corresponding Ito-typ
04611
er

equation, which will be satisfied by the same processxt .
At the end we compute the difference betweeng(x)dN and
g(x)d+N. Using Eq.~14! with H(u)5g„x(t,u)… and ]/]u
5g(x)]/]x we get

gdN2gd+N5ldtEE
N

N1z

g„x~ t,u!…du

5ldtEE
N

N1z

g„x~ t,u!…
]u

]x
dx~ t,u!

5ldtE@x~ t,N1z!2x~ t,N!#

5ldtEFexpS z
]

]ND21Gx~ t,N!

5ldtEE
0

z

dz expFzg
]

]xGg. ~19!

The integrand of the last expression is a solution of a par
differential equation

]C/]z5g~x!]C/]x,

with the initial conditionC(z50)5g(x). Thus

expFzg
]

]xGg5C„h~x!1z…, ~20!

where

h~x!5Ex dv
g~v !

, C„h~x!…[g~x!. ~21!

Concluding, we have found that Stratonovich equat
~18! is equivalent to the following Ito-type equation

dxt5@ f ~x!1D~x!#dt1g~x!d+Nt , ~22!

where

D~x!5lEE
0

z

dzC„h~x!1z…, ~23!

and whereC andh are implicitly given by Eqs.~21!. Simi-
larly, Ito equation

dxt5 f ~x!dt1g~x!d+Nt ~24!

corresponds to

dxt5@ f ~x!2D~x!#dt1g~x!dNt ~25!

in the Stratonovich interpretation. At the Wiener proce
limit ~13! D(x)→Dg(x)g8(x), achieving the form of the
‘‘spurious drift’’ term, well known from the ordinary Lange
vin equation theory.

Examples.In a number of special cases Eqs.~21! can be
solved andD(x), Eq.~23!, can beexplicitly computed. As an
example, let us find the Ito-type equation satisfied by
processxt5(aNt/2)2. One has
7-3
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dxt5ax1/2dNt . ~26!

Thus h(x)52x1/2/a52g(x)/a2 and C(h)5a2h/2. Equa-
tion ~23! takes a form

D~x!5lEE
0

z

dz
a2

2
@h~x!1z#5l~ax1/2Ez1a2Ez2/4!.

Therefore

dxt5l~ax1/2Ez1a2Ez2/4!dt1ax1/2d+Nt . ~27!

Calculating directly the averagesd^xt&5(a/2)2d^Nt
2&

5(a/2)2@lEz212(lEz)2t#dt5^D(xt)&dt and taking into
account the nonanticipating property, we verify that Ito eq
tion ~27! is correct.

In the second example we find the Ito-form correspond
to the important equation

dxt5yxdNt . ~28!

Here, h(x)5y21ln x, C(h)5yeyh and D(x)5lx(Eeyz

21). We obtain

dxt5lx~Eeyz21!dt1yxd+Nt . ~29!

Using theexplicit solution xt5x0eyNt and Eq.~4! one has
d^xt&5l^xt&(Eeyz21)dt in agreement with Eq.~29!.

A following equation

dSt5rSdt1sSd+Nt[@r 2l~Eesz21!#Sdt1sSdNt

~30!

may be thus proposed as an extension of Bachelier-Bla
Scholes equation for ‘‘Poissonian markets.’’ The stocha
solution

St5S0 exp$@r 2l~Eesz21!#t%exp~sNt! ~31!

immediately follows from the Stratonovich equation a
then can be directly applied in a financial analysis, e.g.,
option pricing. Such modeling of prices seems attractive,
flecting a discrete and random time of successive tran
ss
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tions. Moreover, theinternal degrees of freedom of a com
pound Poisson process, related to the possible choic
differentp(z), give probably the ability for a better fitting o
the real data than a single parameter, volatilitys, of a Gauss-
ian market model.

IV. FINAL REMARKS

We have shown that the Ito-type formalism can also
constructed for the Langevin equation

dxt /dt5 f ~x!1g~x!j t ~32!

with multiplicative white shot noise~WSN!, j t5dNt /dt,
whereNt is a compound Poisson process. The multiplicat
noise is usually considered as the external one, introduce
the fluctuation of parameters. The definite sign of parame
is frequently required from its physical meaning or from gl
bal stability conditions@8#. In such case the use of the GW
to describe the fluctuation is not possible. Moreover
WSN appears as a well-defined~uncorrelated, and leading t
the Markovian description! limit of the Campbell process
The last one is usually considered as a good descriptio
the real physical fluctuation@11#. At the general level of the
stochastic processes theory the Ito and Stratonovich
proaches are equivalent in a sense that the difference ma
counted by the appropriate modification of the drift term
Eq. ~32!. Nevertheless the specific general properties of
Ito formalism appear more useful if kinetic equation~32! is
not a priori known, but has to be proposed in accordan
with certain assumptions. For example, the linear relaxa
is not affected if the multiplicative noise coupling is treat
according to the Ito interpretation. Similarly, the martinga
property, which is essential for the games theory, is c
served if the Ito integrals are used@1#.

The most important results of the paper are Eq.~12!
specifying the~Ito-type! rule of martingale integration with
respect to compound Poisson process and Eqs.~23! and~21!
providing the ‘‘spurious drift’’ term, transforming betwee
the Ito equation and the Stratonovich equation with multip
cative white shot noise.
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